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Self-diffusion coefficients of charged particles:
Prediction of nonlinear volume fraction dependence
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We report on calculations of the translational and rotational short-time self-diffusion coefficientsDs
t and

Ds
r for suspensions of charge-stabilized colloidal spheres. These diffusion coefficients are affected by electro-

static forces and many-body hydrodynamic interactions~HI!. Our computations account for both two-body and
three-body HI. For strongly charged particles, we predict interesting nonlinear scaling relationsDs

t

}12atf
4/3 andDs

r}12arf
2 depending on volume fractionf, with essentially charge-independent param-

etersat andar . These scaling relations are strikingly different from the corresponding results for hard spheres.
Our numerical results can be explained using a model of effective hard spheres. Moreover, we perceptibly
improve the known result forDs

t of hard-sphere suspensions.@S1063-651X~97!05307-5#

PACS number~s!: 82.70.Dd, 83.10.Pp
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Self-diffusion of spherical colloidal particles has be
studied experimentally over a wide range of time scales
means of various scattering techniques, in particular by
larized and depolarized dynamic light scattering~DLS!. At
short times on the scale of DLS, the particles have o
moved a small fraction of their diameters, and the particle
motion is determined by solvent-mediated many-body
drodynamic interactions~HI! weighted by the equilibrium
microstructure. The latter is determined by direct poten
forces arising, e.g., for hard-sphere particles from the st
repulsion between the particles, and, in the case of cha
stabilized particles, from the electrostatic repulsion of ov
lapping double layers@1#. The configuration-averaged effe
of HI gives rise to values of the translational and rotatio
diffusion coefficientsDs

t andDs
r that are smaller than thei

respective Stokesian values at infinite dilution, i.
D0
t 5kBT/(6pha) and D0

r 5kBT/(8pha3). Here, a is the
particle radius andh is the shear viscosity of the suspendi
fluid.

The properties of hard spheres are in various resp
easier to describe quantitatively than those of char
stabilized particles. As a consequence, there are many
perimental@2–4# and theoretical@3,5,6# results available on
the short-time self-diffusion coefficients of hard spher
With regard to the computation of the first and second vi
coefficients ofDs

t andDs
r in an expansion in terms of th

volume fractionf, the currently established results for th
normalized diffusion coefficientsHs

t and Hs
r are given by

@3,6#

Hs
t5

Ds
t

D0
t 5121.831f10.88f21O~f3!, ~1!

Hs
r5

Ds
r

D0
r 5120.630f20.67f21O~f3!. ~2!
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The possibility to expandHs
t andHs

r in powers off arises
from the fact that hard-sphere suspensions at smallf are
dilute both with respect to HI and to the microstructure.

While the short-time dynamics of hard spheres is w
understood, far less is known thus far about charge-stabil
suspensions. The purpose of this letter is to show that th
are striking differences in thef dependence ofHs

t andHs
r

between charged and uncharged suspensions, and al
provide quantitative predictions. These unexpected diff
ences are most pronounced for deionized, i.e., salt-free
pensions of charged particles. For such systems, our num
cal results forHs

t and Hs
r are well represented by th

parametric form 11pfa, wherea is an exponent larger tha
one. Due to the strong direct interparticle interactions, dei
ized suspensions especially exhibit pronounced spatial co
lations even for very smallf, sayf<1024, so that, contrary
to hard spheres, these systems are dilute only with regar
HI. The corresponding radial distribution function~rdf!
g(r ) has a well-developed first maximum and it exhibits
so-called correlation hole, i.e.,g(r ) is essentially zero up to
a well-defined nearest-neighbor separation larger thans @7#.
In comparison, the rdf of hard spheres is nearly equal t
unit step functionQ(r2s) for f<0.05, and an analytica
expression forg(r ) of hard spheres is known up to first ord
in f @8#. Therefore, the calculation ofHs

t andHs
r at small

f is more demanding for charged suspensions, because
necessary to use static distribution functions generated
integral equation methods or computer simulations.

We base our calculations ofHs
t for charge-stabilized sus

pensions on the general expressionHs
t5^ TrD11

tt (rN)&/
(3D0

t ) as derived from the generalized Smoluchowski eq
tion @9#. The corresponding expression forHs

r is obtained by
replacing the supersciptt with r . The hydrodynamic diffu-
sivity tensorD11

tt (rN) @D11
rr (rN)# relates the force~torque! ex-

erted by the solvent on an arbitrary particle 1 with its tran
lational ~rotational! velocity. TrD11

tt denotes the trace o
D11
tt , and the factor 1/3 accounts for spatial isotropy. Due

the many-body character of HI, both tensors depend on
instantaneousN-particle configurationrN5(r1 , . . . ,rN), and
1258 © 1997 The American Physical Society
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56 1259BRIEF REPORTS
in principle the fullN-particle distribution function is neede
to perform the equilibrium ensemble average^&. Thus, it is
not possible to perform an exact calculation ofHs

t andHs
r

that is valid for all particle concentrations. For smallf, how-
ever, when the mean particle distance gets sufficiently la
a good approximation for these quantities is obtained by c
sidering only two-body and, to leading order, three-bo
contributions to the HI. For this reason, we use a roo
cluster expansion for the calculation ofHs

t @3,10#, leading to
the following series expansion ofHs

t :

Hs
t511Hs1

t f1Hs2
t f21•••, ~3!

which we truncate after the third term. Here,Hs1
t is given in

terms of integrals

Hs1
t 5

1

a3E2a
`

drr 2g~r !6pha@a11
tt ~r !12b11

tt ~r !#, ~4!

involving g(r ) and scalar two-body mobility function
a11
tt (r ) andb11

tt (r ), whose expansions in powers of (a/r ) are
known, in principle, up to arbitrary order@11,12#. In our
calculations, we include contributions toa11

tt andb11
tt up to

O(r220). The coefficientHs2
t is far more difficult to calculate

since it involves three-body HI. By considering the leadi
term in the far-field expansion of the three-body part
D11
tt @6#, Hs2

t is approximated by the threefold integral

Hs2
t 5

225

64 E0
1

dt12E
0

1

dt13E
21

1

djg~3!~ t12,t13,j! f t~ t12,t13,j!,

f t~ t12,t13,j!5
t12t13
h7/2

j$11t12
2 t13

2 22~ t12
4 1t12

4 !210jt12t13

3~ t13
2 1t12

2 !1j2@10t12
2 t13

2 16~ t13
4 1t12

4 !#

26j3t12t13~ t13
2 1t12

2 !13j4t12
2 t13

2 %, ~5!

with h(t12,t13,j)5t12
2 1t13

2 22jt12t13. This integral involves
the static triplet correlation functiong(3) expressed in terms
of t1252a/r 12, t1352a/r 13, andj5r12•r13/(r 12r 13), where
r i j5r i2r j is the relative vector between the particlesi and
j , andr i j is its magnitude.
A similar analysis is used by us for calculatingHs

r , lead-
ing to expressions for the coefficientsHs1

r andHs2
r , which

appear in a series similar to Eq.~3! and which involve now-
rotational two-body and three-body mobility functions. F
conciseness, we will not quote here the expressions forHs1

r

andHs2
r , since these are given in Ref.@3#. Once again, we

account for terms up toO(r220) in the far-field expansion
for the two-body mobility functions, and for the leadin
three-body part ofD11

rr .
For charge-stabilized suspensions, it is only necessar

account for the first few terms in the expansion of the tw
body mobility functions, since the integrals in Eq.~4! con-
verge rapidly becauseg(r ) is practically zero at smallr @7#.
On the other hand, many terms are needed for hard sph
to accurately obtain the first virial coefficients as depicted
Eqs.~1! and~2!. Notice that the second virial coefficients fo
hard spheres are made up of two contributions. The first
e,
n-
y
d

f

to
-

res
n

e

is due toHs1
t andHs1

r , with g(r ) expanded up to first orde
in f, whereas the second one arises from three-particle H
embodied inHs2

t andHs2
r @3,6#. The second virial coefficien

of Hs
r in Eq. ~2! was obtained by essentially accounting f

all two-body contributions inHs1
r , and also for the leading

three-body contribution@3#. On the other hand, only two
body terms up toO(r27) plus the leading three-body term
were used so far in calculating the second virial coefficien
Hs
t , as given by the value 0.88 in Eq.~1! @6#. By considering

terms up toO(r220) in calculatingHs1
t , we obtain an im-

proved value of21.096 for the two-body part of the secon
virial coefficient. Together with the three-body contributio
Hs2
t 51.81, which is obtained by Monte-Carlo integration

Eq. ~5!, we get the improved result

Hs
t5121.831f10.71f2. ~6!

This result is in better agreement with experimental d
@3,4# for hard-sphere suspensions than Eq.~1!. The experi-
mental data in Ref.@4# especially agree almost perfectly wit
Eq. ~6!.

However, for charge-stabilized suspensions, it is not p
sible to use low-order virial expressions of the static dis
bution functions. We use instead results forg(r ), obtained
from the rescaled mean spherical approximation~RMSA!, as
applied to the one-component macroion fluid model~OCM!
of charge-stabilized suspensions@7#. In the OCM, the effec-
tive pair potentialu(r ) acting between two particles consis
of a hard-core part with diameters, and of a screened Cou
lomb potentialbu(r )5Ksexp@2k(r2s)#/r for r.s. Here,
K5(LB /s)Z

2(11ks/2)22, LB5e2/(ekBT), e is the dielec-
tric constant of the solvent, andZ is the effective charge of a
particle in units of the elementary chargee. k is given by the
Debye-Hückel relation k25LB@24uZuf/s318pns#, where
ns is the number density of added 1–1-electrolyte, and
counterions are assumed to be monovalent@7#. For comput-
ingHs2

t andHs2
r , g(3)(r ,r 8) is needed as static input. To th

end, we use for simplicity Kirkwood’s superposition a
proximation forg(3)(r ,r 8), with the rdf calculated in RMSA.
The threefold integrals are calculated using a Monte Ca
method.

Since the observed qualitative differences in the sh
time self-diffusion coefficients of charged and uncharg
particles are most pronounced for deionized charged sus
sions, we concentrate here on the casens50. The system
parameters used in our calculations are typical for susp
sions that have been under experimental study@3,13#. If not
stated differently, two-body contributions to HI, includin
terms up toO(r220), are considered together with the lea
ing three-body contribution. Figures 1 and 2 show our res
for Hs

t andHs
r as functions off ~crosses!. The corresponding

results for hard spheres are also included in these figu
Evidently, the effect of HI onHs

t andHs
r is less pronounced

for charged suspensions. Moreover, we find a qualitativ
different f dependence ofHs

t andHs
r for charged and un-

charged particles. Whereas for hard spheres thef depen-
dence ofHs

t and Hs
r is linear at smallf, we obtain for

charged particles, from a least-square fit of our numer
results to the form 11pfa, the following interesting results
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1260 56BRIEF REPORTS
Hs
t512atf

1.30, at52.59, ~7!

Hs
r512arf

1.99, ar51.28, ~8!

with exponents close to 4/3 and 2, respectively. Equation~7!
is valid for f<0.05, whereas from Fig. 2 it is seen that E
~8! is valid even up tof<0.15. The prefactorsat andar are
found to be nearly independent ofZ for Z>200. This fact is
illustrated in Fig. 3, which shows results forHs

t (f) for vari-
ous values ofZ. Notice that due to theZ independence o
Hs
t andHs

r , the same Eqs.~7! and~8! are recovered when th
accurate, but elaborate, Rogers-Young integral equa
scheme@7# is used forg(r ) instead of the RMSA.

FIG. 1. Hs
t versusf for a deionized charge-stabilized suspe

sion with s590 nm,Z5200,T5294 K, ande587.0. Solid line:
best fit of the numerical results shows fractionalf dependence, i.e.
Hs
t5122.59f1.30, with exponent.4/3. Also shown is the depen

dence ofHs
t on various two-body contributions to the HI. Include

are terms of the two-body expansion ofD11
tt as indicated in the

figure. Dashed-dotted line: result for hard spheres according to
~6!.

FIG. 2. Results forHs
r obtained for a system with the sam

parameters as in Fig. 1 and compared with the corresponding r
for hard spheres given in Eq.~2!. Best fit of the calculated points
~solid line! has nearly quadratric f dependence, i.e.
Hs
r5121.28f1.99, which extends to surprisingly largef. Further

shown is the dependence ofHs
r on various terms of the two-bod

series expansion ofD11
rr .
.

n

We will now show that the occurance of exponents clo
to 4/3 and 2 and theZ independence ofat and ar can be
understood in terms of a model of effective hard sphe
~EHS! with density-dependent effective diametersEHS.s,
which accounts for the extension of the correlation hole. W
can identifysEHS5rm , whererm is the position of the prin-
cipal peak ofg(r ). It is now crucial to note for deionized
suspensions thatrm as obtained from the RMSA coincide
within 3% with the the average geometrical distan
r̄ 5s@p/(6f)#1/3 of two spheres. Thus, we have the scali
relationrm} r̄ }f21/3. Here it is important thatZ be chosen
large enough that the physical hard core of a particle is co
pletely masked by the electrostatic repulsion@7#. We now
approximateg(r ) by the rdf gEHS(r ;fEHS) of the EHS
model, evaluated at the effective volume fractio
fEHS5f(sEHS/s)

3. When this approximation forg(r ) is
used, and if only the leading terms in the series expans
of the two-body moblility functions are retained, we obta
the resultsHs

t512atf
4/3 andHs

r512arf
2 with exponents

very close to our numerical results. Here,

at5
15

8
fEHS

21/3E
1

`

dx
gEHS~z;fEHS!

x2

5
15

16
fEHS

21/3E
0

`

dzz2GEHS~z;fEHS!,

ar5
15

16fEHS
E
1

`

dx
gEHS~z;fEHS!

x4

5
15

384fEHS
E
0

`

dzz4GEHS~z;fEHS!, ~9!

and GEHS(z) is the Laplace transform ofxgEHS(x) with
x5r /sEHS. Notice thatfEHS, and henceat and ar , are
independent off andZ (>200) whensEHS is identified as
rm . To obtain a rough estimate ofat andar , we can further
approximategEHS(x) by Q(x21), andsEHS by r̄ , giving
at52.33 andar50.60. By employing the analytic expres
sion forGEHS(z;fEHS) provided by the Percus-Yevick ap

q.

ult

FIG. 3. Hs
t versusf for various values of the effective charg

numberZ as indicated in the figure. All system parameters exc
Z are the same as in Fig. 1. Notice thatHs

t becomes nearly inde
pendent ofZ at Z>200.
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56 1261BRIEF REPORTS
proximation @14#, we obtain the valuesat53.02 and
ar51.12, where the value forar in particular is rather close
to the numerical coefficient in Eq.~8!.

Thus, the EHS model suggests that the scaling relation
Eqs. ~7! and ~8! found from our numerical calculations ar
caused mainly by the leading terms in the series expans
of the two-body mobility functions. To verify this assertio
we have included in Figs. 1 and 2 results forHs

t and Hs
r

obtained by neglecting three-body contributions and by tr
cating the two-body series expansions after various term
increasing powers in (a/r ). These figures illustrate our find
ing that, up tof50.05, the lowest order contributions to th
translational and rotational two-body mobilities proportion
to r24 andr26, respectively, give by far the most importa
contributions toHs

t and Hs
r . Higher-order two-body terms

and the leading-order three-body term become signific
only forf>0.05. ForHs

t , these higher-order terms are of th
same signature and sum up to increasing deviations inHs

t

from Eq.~7! whenf is enlarged beyond 0.05. With regard
Hs
r , however, we observe a fortuitous partial cancellat

between the three-body contribution and the two-body te
of orderO(r28), which are of opposite sign. As a result, E
~8! remains valid even up tof.0.15. We mention that this
cancellation can also be understood in terms of the E
model by reasoning similar to that given above for the le
ing two-body contribution toHs

r @17#.
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It is further interesting to investigate howHs
t andHs

r are
influenced by added electrolyte. Our corresponding calcu
tions show a gradual transition from the nonlinear scal
relations~7! and~8! to the expressions~2! and~6! when the
amount of added saltns is increased and when the micro
structure changes to a hard-sphere-like structure due to
screening of the electrostatic repulsion.

To summarize, we have calculated the translational
rotational short-time self-diffusion coefficient of charge
suspensions by incorporating two-body and three-body c
tributions to the HI. As a major result, we have found for t
first time substantially different volume fraction depende
cies for charged and uncharged particles. We were also
to explain the observed differences in terms of an effect
hard-sphere model. We mention that recent depolarized D
experiments@13# on deionized suspensions of optically a
isotropic particles are in good agreement with our predic
result forHs

r in Eq. ~8!. With regard toHs
t , we are not aware

of experimental results that are sufficiently precise at l
f to distinguish thef4/3-behavior from the essentially linea
f dependence of hard spheres. Finally, we point out t
interesting qualitative differences between suspensions
charged particles and hard spheres exist also with respe
sedimentation@15# and long-time self-diffusion@16#.

We are indebted to R. Klein and B. Lo¨hle for useful dis-
cussions and to the Deutsche Forschungsgemeinschaft~SFB
513! for financial support.
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