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Self-diffusion coefficients of charged particles:
Prediction of nonlinear volume fraction dependence
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We report on calculations of the translational and rotational short-time self-diffusion coeffi€iéraad
D¢ for suspensions of charge-stabilized colloidal spheres. These diffusion coefficients are affected by electro-
static forces and many-body hydrodynamic interactid#lig. Our computations account for both two-body and
three-body HI. For strongly charged particles, we predict interesting nonlinear scaling relﬁlﬁons
x1—a,¢*® and Dlx1—a, ¢? depending on volume fractios, with essentially charge-independent param-
etersa; anda, . These scaling relations are strikingly different from the corresponding results for hard spheres.
Our numerical results can be explained using a model of effective hard spheres. Moreover, we perceptibly
improve the known result fob%, of hard-sphere suspensiofi$1063-651X97)05307-5

PACS numbds): 82.70.Dd, 83.10.Pp

Self-diffusion of spherical colloidal particles has beenThe possibility to expantli-lts andH¢ in powers of¢ arises
studied experimentally over a wide range of time scales byrom the fact that hard-sphere suspensions at sehadire
means of various scattering techniques, in particular by podilute both with respect to HI and to the microstructure.
larized and depolarized dynamic light scatterifiy).S). At While the short-time dynamics of hard spheres is well
short times on the scale of DLS, the particles have only,ngerstood, far less is known thus far about charge-stabilized
moved a small fraction of their diameter, and the particle g gpensions. The purpose of this letter is to show that there
motion is determined by solvent-mediated many-body hy,o striking differences in thep dependence ofl} and H}
drodynamic interactiongHI) weighted by the equilibrium Ibetween charged and uncharged suspensions, and also to

microstructure. The latter is determined by direct potentia rovide quantitative predictions. These unexnected differ-
forces arising, e.g., for hard-sphere particles from the steri® q P e exp
nces are most pronounced for deionized, i.e., salt-free sus-

repulsion between the particles, and, in the case of chargg- . ¢ ch q cles. F h :
stabilized particles, from the electrostatic repulsion of overP€NSIons of charged particles. For such systems, our numeri-

lapping double layergl]. The configuration-averaged effect €@l results forH and Hg are well represented by the
of HI gives rise to values of the translational and rotationalParametric form ¥ p¢*, wherea is an exponent larger than
diffusion coefficientsD!, and DY, that are smaller than their One. Due to the strong direct interparticle interactions, deion-
respective Stokesian values at infinite dilution, i.e.,ized suspensions especially exhibit pronounced spatial corre-
DB:kBT/(Bﬂ.na) and D{=kgT/(877a%). Here,a is the lations even for very smalp, sayp=<10*4, so that, contrary
particle radius and; is the shear viscosity of the suspending to hard spheres, these systems are dilute only with regard to
fluid. HI. The corresponding radial distribution functiofrdf)

The properties of hard spheres are in various respecg(r) has a well-developed first maximum and it exhibits a
easier to describe quantitatively than those of chargeso-called correlation hole, i.eg(r) is essentially zero up to
stabilized particles. As a consequence, there are many erwell-defined nearest-neighbor separation larger than|.
perimental[2—4] and theoretical3,5,6] results available on In comparison, the rdf of hard spheres is nearly equal to a
the short-time self-diffusion coefficients of hard spheresunit step function® (r — o) for ¢=<0.05, and an analytical
With regard to the computation of the first and second virialexpression fog(r) of hard spheres is known up to first order
coefficients ofD} and DY in an expansion in terms of the in ¢ [8]. Therefore, the calculation dfi and H. at small
volume fraction¢, the currently established results for the ¢ is more demanding for charged suspensions, because it is
normalized diffusion coefficientsi and H. are given by necessary to use static distribution functions generated by

[3,6] integral equation methods or computer simulations.
D! We base our calculations &f;, for charge-stabilized sus-
Hl=—2=1-1.831p+0.885%+ O( 4 (1) Pensions on the general expressi¢tt=( TrDY,(rN))/
s Dto ’ (3D5) as derived from the generalized Smoluchowski equa-

D tion [9]. The corresponding expression fdf is obtained by
r_2S_4_ _ 2 3 replacing the superscigtwith r. The hydrodynamic diffu-
HS_D[) =1-0.6307—0.67°+O(¢%. @ sivity tensorDY(rN) [D}y(rN)] relates the forcétorque ex-
erted by the solvent on an arbitrary particle 1 with its trans-
lational (rotationa) velocity. TiDY, denotes the trace of
*Present address: InstitutriTheoretische Physik I, Heinrich- DY, and the factor 1/3 accounts for spatial isotropy. Due to
Heine-Universits Universitasstr. 1, D-40225 Dsseldorf, Ger- the many-body character of HI, both tensors depend on the
many. Electronic address: martin@thphy.uni-duesseldorf.de instantaneoubl-particle configuratiomN=(r, ... ry), and
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in principle the fullN-particle distribution function is needed is due toH%; andH, , with g(r) expanded up to first order
to perform the equilibrium ensemble average Thus, itis  in ¢, whereas the second one arises from three-particle HI as
not possible to perform an exact calculationtdf andH;  embodied irH%, andH", [3,6]. The second virial coefficient
that is valid for all particle concentrations. For smallhow-  of HY in Eq. (2) was obtained by essentially accounting for
ever, when the mean particle distance gets sufficiently largey| two-body contributions irH.; , and also for the leading

a good approximation for these quantities is obtained by COMthree-body contributiod3]. On the other hand, only two-
sideri_ng _only two-body and, to leading order, three—bodybody terms up td(r ~7) plus the leading three-body term
contributions to the HI. For this reason, we use a rooteqyere used so far in calculating the second virial coefficient of
cluster expansion for the calculation lat, [3,10], leading to HL, as given by the value 0.88 in E(L) [6]. By considering
the following series expansion éf: terms up toO(r ~29 in calculatingHY;, we obtain an im-
proved value of-1.096 for the two-body part of the second
virial coefficient. Together with the three-body contribution
H.,=1.81, which is obtained by Monte-Carlo integration of
Eq. (5), we get the improved result

Hi=1+H, p+HL %+, (3

which we truncate after the third term. Hek}; is given in
terms of integrals

1 (= H!=1-1.831p+0.7142. 6
Hy=o | drrgnemmalalin +2pn) @ e ©

] ) B ) This result is in better agreement with experimental data
|nt\t/olvmg g(ti) and scalar two_—body mobility functions [3,4] for hard-sphere suspensions than EY. The experi-
ay(r) andBy(r), whose expansions in powers @f/() are  mental data in Ref4] especially agree almost perfectly with
known, in principle, up to arbitrary orddri1,12. In our Eq. (6).
calculations, we include contributions td; and 81; up to However, for charge-stabilized suspensions, it is not pos-
O(r ~29. The coefficienH}, is far more difficult to calculate ~sible to use low-order virial expressions of the static distri-
since it involves three-body HI. By considering the leadingbution functions. We use instead results &fr), obtained
term in the far-field expansion of the three-body part offrom the rescaled mean spherical approximatiRMSA), as
DY, [6], HL, is approximated by the threefold integral applied to the one-component macroion fluid mo@@CM)

of charge-stabilized suspensidm. In the OCM, the effec-

. 225(1 1 1 tive pair potential(r) acting between two particles consists
Hsfajo dtl?JO dtl3J71d§g(3)(t12’tl3’f)ft(t12'tl3'§)’ of a hard-core part with diameter, and of a screened Cou-
lomb potentialBu(r) =Koexg —«(r—a)]/r for r>0a. Here,
K=(Lg/0)Z?(1+ kol2)” 2, Lg=€%/(ekgT), € is the dielec-

toot
fi(tin.tiz,8)= %,?g{lnfztig— 2(t5,+t5,) — 106t 5t 15 tric constant of the solvent, aritlis the effective charge of a
particle in units of the elementary chargex is given by the
X (125 t2,) + E 1022+ 6(t2 4+ t4))] Debye-Hickel relation l.('2: Lg[24/Z| ¢/ a3+ 8mng], where
ng is the number density of added 1-1-electrolyte, and the
—6§3t12t13(t§3+t§2)+3§4t§2t§3}, (5) counterions are assumed to be monoval@htFor comput-

ing HY, andH%,, g®)(r,r") is needed as static input. To this
with h(t12,t13,€) =t5,+ti3— 2éts5t15. This integral involves  end, we use for simplicity Kirkwood’s superposition ap-
the static triplet correlation functiog® expressed in terms proximation forg®)(r,r"), with the rdf calculated in RMSA.
of ty,=2alr,, tiz=2alry3, andé=rq,-r13/(r1or13), where  The threefold integrals are calculated using a Monte Carlo
rij=ri—r; is the relative vector between the particleand  method.

j, andrj; is its magnitude. Since the observed qualitative differences in the short-
A similar analysis is used by us for calculatintj, lead-  time self-diffusion coefficients of charged and uncharged
ing to expressions for the coefficientt, andHg,, which  particles are most pronounced for deionized charged suspen-

appear in a series similar to E@®) and which involve now- sions, we concentrate here on the cage 0. The system
rotational two-body and three-body mobility functions. For parameters used in our calculations are typical for suspen-
conciseness, we will not quote here the expressionsifgr ~ sions that have been under experimental s{&$3). If not
andHL,, since these are given in R¢B]. Once again, we Stated differently, two-body contributions to Hl, including
account for terms up t@(r -2 in the far-field expansion erms up tO(r ~*), are considered together with the lead-
for the two-body mobility functions, and for the leading N9 trlree-body contrlputlon. Figures 1 and 2 show our rgsults
three-body part oD, . for H{ andHy as functions ofp (cross_e}; The cc_)rrespond|_ng
For charge-stabilized suspensions, it is only necessary t@gults for hard spheres are also mcl_uded in these figures.
account for the first few terms in the expansion of the two-Evidently, the effect of HI orH andHy is less pronounced
body mobility functions, since the integrals in E@) con- for charged suspensions. Moreover, we find a qualitatively
verge rapidly becausg(r) is practically zero at smafi [7].  different ¢ dependence oH{ and Hy for charged and un-
On the other hand, many terms are needed for hard spherébarged particles. Whereas for hard spheres ¢hdepen-
to accurately obtain the first virial coefficients as depicted indence ofHY and Hj is linear at small¢, we obtain for
Egs.(1) and(2). Notice that the second virial coefficients for charged particles, from a least-square fit of our numerical
hard spheres are made up of two contributions. The first ongesults to the form * p¢*, the following interesting results:
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FIG. 1. H. versus¢ for a deionized charge-stabilized suspen-  FIG. 3. H‘S versus¢ for various values of the effective charge
sion with =90 nm,Z=200, T=294 K, ande=87.0. Solid line:  numberZ as indicated in the figure. All system parameters except
best fit of the numerical results shows fractiogatiependence, i.e., Z are the same as in Fig. 1. Notice thd} becomes nearly inde-
H.=1-2.5941% with exponent=4/3. Also shown is the depen- pendent ofZ at Z=200.
dence ofH! on various two-body contributions to the HI. Included

are terms of the two-body expansion Bt; as indicated in the We will now show that the occurance of exponents close
figure. Dashed-dotted line: result for hard spheres according to Edo 4/3 and 2 and th& independence of; anda, can be
(6). understood in terms of a model of effective hard spheres
(EHS) with density-dependent effective diametegy s> o,
Hi=1-a¢"° a=2.59, (7)  which accounts for the extension of the correlation hole. We
can identifyogys=r.,, wherer, is the position of the prin-
ngl_ar¢l.997 a,=1.28, ®) cipal peak ofg(r). It is now crucial to note for deionized

suspensions that,, as obtained from the RMSA coincides

it : .
with exponents close to 4/3 and 2, respectively. Equafion w_|th|n 3% Wlig the the average geometrical dlstance
is valid for $=<0.05, whereas from Fig. 2 it is seen that Eq. " ~ L 7/(64)]"" of two spheres. Thus, we have the scaling
(8) is valid even up tap=<0.15. The prefactora, anda, are  relationrnocr o~ 3. Here itis important thaZ be chosen
found to be nearly independent Bffor Z=200. This factis large enough that the physical hard core of a particle is com-
illustrated in Fig. 3, which shows results fei{(¢) for vari-  Pletely masked by the electrostatic repulsiah. We now
ous values oZ. Notice that due to th& independence of @aPproximateg(r) by the rdf geys(r; pens) of the EHS
H andH_, the same Eq<7) and(8) are recovered when the model, evaluated at the effective volume fraction
3 . . . -
accurate, but elaborate, Rogers-Young integral equatioffens= ¢(0ens/o)”. When this approximation fog(r) is

schemd 7] is used forg(r) instead of the RMSA used, and if only the leading terms in the series expansions
' of the two-body moblility functions are retained, we obtain

the resultsHi=1—a;¢*® andH{=1—a, ¢ with exponents
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FIG. 2. Results forH] obtained for a system with the same arld Gens(2) s the Laplace transform okgeys(x) with

r/ogys. Notice that¢gys, and hencea, and a,, are

parameters as in Fig. 1 and compared with the corresponding resu)fnd ndent ndZ (=200) when is identified

for hard spheres given in E@2). Best fit of the calculated points e$e be o a h ( ) whe ZEHS S de fe has

(solid line has nearly quadratric» dependence, i.e., : 0.0 tain a rough estimate af anda, , we can urt er

H.=1-1.284"% which extends to surprisingly largé. Further appr0X|mategEHS(x) by ®(x—1), andoeys by r, giving

shown is the dependence B, on various terms of the two-body a;=2.33 anda,=0.60. By employing the analytic expres-

series expansion dbf;. sion for Ggno(z; Ppeng) provided by the Percus-Yevick ap-
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proximation [14], we obtain the valuesa;=3.02 and It is further interesting to investigate hoW. andHY are
a,=1.12, where the value fa, in particular is rather close influenced by added electrolyte. Our corresponding calcula-
to the numerical coefficient in Ed8). tions show a gradual transition from the nonlinear scaling

Thus, the EHS model suggests that the scaling relations irelations(7) and(8) to the expressiong2) and (6) when the
Egs. (7) and (8) found from our numerical calculations are amount of added salts is increased and when the micro-
caused mainly by the leading terms in the series expansiorgructure changes to a hard-sphere-like structure due to the

of the two-body mobility functions. To verify this assertion, screening of the electrostatic repulsion. _
we have included in Figs. 1 and 2 results fdf and H' To summarize, we have calculated the translational and

obtained by neglecting three-body contributions and by trunfotational short-time self-diffusion coefficient of charged
spensions by incorporating two-body and three-body con-

cating the two-body series expansions after various terms ributions to the HI. As a major result, we have found for the

increasing powers ingfr). These figures illustrate our find- first time substantially different volume fraction dependen-

|tng thlai_, up |t°¢:0'(35t'. thell?wesbt c&rder ctc))_?tt.rlbutlons t(t)' thelcies for charged and uncharged particles. We were also able
ransiational and rotational two-body mobiliies proportionaly, explain the observed differences in terms of an effective

tor fl andr °, retspectlverly, give by far the most important parq_sphere model. We mention that recent depolarized DLS
contributions toHg and Hg. Higher-order two-body terms  experimentq13] on deionized suspensions of optically an-
and the leading-order three-body term become significantotropic particles are in good agreement with our predicted
only for =0.05. ForH!, these higher-order terms are of the result forHY in Eq. (8). With regard toH%, we are not aware
same signature and sum up to increasing deviationdiin of experimental results that are sufficiently precise at low
from Eq.(7) whené is enlarged beyond 0.05. With regard to ¢ to distinguish thep*>-behavior from the essentially linear
HL, however, we observe a fortuitous partial cancellation¢ dependence of hard spheres. Finally, we point out that
between the three-body contribution and the two-body term#teresting qualitative differences between suspensions of
of orderO(r ~8), which are of opposite sign. As a result, Eq. charged particles and hard spheres exist also with respect to
(8) remains valid even up t¢=0.15. We mention that this sedimentatiorj15] and long-time self-diffusior16].
cancellation can also be understood in terms of the EHS \We are indebted to R. Klein and B. hte for useful dis-
model by reasoning similar to that given above for the leadcussions and to the Deutsche Forschungsgemeins@feit

ing two-body contribution tdHg [17]. 513 for financial support.
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